<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Clinical Neurophysiology</td>
<td>Eric Stalberg • Robert R. Young</td>
</tr>
<tr>
<td>2</td>
<td>Movement Disorders</td>
<td>C. David Marsden • Stanley Fahn</td>
</tr>
<tr>
<td>3</td>
<td>Cerebral Vascular Disease</td>
<td>Michael J.G. Harrison • Mark L. Dyken</td>
</tr>
<tr>
<td>4</td>
<td>Peripheral Nerve Disorders</td>
<td>Arthur K. Asbury • R.W. Gilliatt</td>
</tr>
<tr>
<td>5</td>
<td>The Epilepsies</td>
<td>Roger J. Porter • Paolo I. Morrelli</td>
</tr>
<tr>
<td>6</td>
<td>Multiple Sclerosis</td>
<td>W. Ian McDonald • Donald H. Silberberg</td>
</tr>
<tr>
<td>7</td>
<td>Movement Disorders 2</td>
<td>C. David Marsden • Stanley Fahn</td>
</tr>
<tr>
<td>8</td>
<td>Infections of the Nervous System</td>
<td>Peter G.E. Kennedy • Richard T. Johnson</td>
</tr>
<tr>
<td>9</td>
<td>The Molecular Biology of Neurological Disease</td>
<td>Roger N. Rosenberg • Anita E. Harding</td>
</tr>
<tr>
<td>10</td>
<td>Pain Syndromes in Neurology</td>
<td>Howard L. Fields</td>
</tr>
<tr>
<td>11</td>
<td>Principles and Practice of Restorative Neurology</td>
<td>Robert R. Young • Paul J. Delwaide</td>
</tr>
<tr>
<td>12</td>
<td>Stroke: Populations, Cohorts, and Clinical Trials</td>
<td>Jack P. Whisnant</td>
</tr>
<tr>
<td>13</td>
<td>Movement Disorders 3</td>
<td>C. David Marsden • Stanley Fahn</td>
</tr>
<tr>
<td>14</td>
<td>Mitochondrial Disorders in Neurology</td>
<td>A.H.V. Chapira • Salvatore Dimauro</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>15</td>
<td>Peripheral Nerve Disorders 2</td>
<td>ARTHUR K. ASBURY • P.K. THOMAS</td>
</tr>
<tr>
<td>16</td>
<td>Contemporary Behavioral Neurology</td>
<td>MICHAEL R. TRIMBLE • JEFFREY L. CUMMINGS</td>
</tr>
<tr>
<td>17</td>
<td>Headache</td>
<td>PETER J. GOADSBY • STEPHEN D. SILBERSTEIN</td>
</tr>
<tr>
<td>18</td>
<td>The Epilepsies 2</td>
<td>ROGER J. PORTER • DAVID CHADWICK</td>
</tr>
<tr>
<td>19</td>
<td>The Dementias</td>
<td>JOHN H. GROWDON • MARTIN N. ROSSOR</td>
</tr>
<tr>
<td>20</td>
<td>Hospitalist Neurology</td>
<td>MARTIN A. SAMUELS</td>
</tr>
<tr>
<td>21</td>
<td>Neurologic Complications in Organ Transplant Recipients</td>
<td>EELCO F.M. WIJDICKS</td>
</tr>
<tr>
<td>22</td>
<td>Critical Care Neurology</td>
<td>DAVID H. MILLER • ERIC C. RAPS</td>
</tr>
<tr>
<td>23</td>
<td>Neurology of Bladder, Bowel, and Sexual Dysfunction</td>
<td>CLARE J. FOWLER</td>
</tr>
<tr>
<td>24</td>
<td>Muscle Diseases</td>
<td>ANTHONY H.V. SCHAPIRA • ROBERT C. GRIGGS</td>
</tr>
<tr>
<td>25</td>
<td>Clinical Trials in Neurologic Practice</td>
<td>JOSE BILLER • JULIEN BOGOUSSLAVSKY</td>
</tr>
<tr>
<td>26</td>
<td>Mitochondrial Disorders in Neurology 2</td>
<td>A.H.V. SCHAPIRA • SALVATORE DIMAURO</td>
</tr>
<tr>
<td>27</td>
<td>Multiple Sclerosis 2</td>
<td>W. IAN McDoNALD • JOHN H. NOSEWORTHY</td>
</tr>
<tr>
<td>28</td>
<td>Motor Neuron Disorders</td>
<td>PAMELA J. SHAW • MICHAEL J. STRONG</td>
</tr>
</tbody>
</table>
29 Prevention and Treatment of Ischemic Stroke
SCOTT E. KASNER • PHILIP B. GORELICK

30 The Dementias 2
JOHN H. GROWDON • MARTIN N. ROSSOR

31 Spinocerebellar Degenerations: The Ataxias and Spastic Paraplegias
ALEXIS BRICE • STEFAN-M. PULST

32 Neuro-Ophthalmology
DESMOND P. KIDD • NANCY J. NEWMAN • VALERIE BIOUSSE

33 The Epilepsies 3
SIMON SHORVON • TIMOTHY A. PEDLEY

34 Multiple Sclerosis 3
CLAUDIA F. LUCCHINETTI • REINHARD HOHLFELD

35 Movement Disorders 4
ANTHONY H.V. SCHAPIRA • ANTHONY E.T. LANG • STANLEY FAHN
NUHAD E. ABOU ZEID, MD
Department of Neurology
Mayo Clinic College of Medicine
Rochester, Minnesota

ALBERTO ASCHERIO, MD, DRPH
Department of Nutrition
Harvard School of Public Health
Boston, Massachusetts

BRENDA BANWELL, MD
Associate Professor of Paediatrics (Neurology)
Director, Pediatric Multiple Sclerosis Program
The Hospital for Sick Children
Toronto, Ontario, Canada

ANGELA BATES, MD
Fellow, Department of Neurology
University of Texas Southwestern Medical Center at Dallas
Dallas, Texas

TAMIR BEN-HUR, MD, PhD
Professor and Head, Department of Neurology
The Agnes Ginges Center for Human Neurogenetics
Hadassah–Hebrew University Medical Center
Jerusalem, Israel

ALLEN C. BOWLING, MD, PhD
Medical Director
Multiple Sclerosis Service
Colorado Neurological Institute
Clinical Associate Professor of Neurology
University of Colorado–Denver and Health Sciences Center
Englewood, Colorado
SCOTT L. DAVIS, PhD
Assistant Professor, Department of Neurology
University of Texas Southwestern Medical Center at Dallas
Dallas, Texas

PHILIP L. DE JAGER, MD
Instructor, Department of Neurology
Harvard Medical School
Division of Molecular Immunology
Center for Neurologic Diseases
Brigham & Women's Hospital
Boston, Massachusetts
Program in Medical and Population Genetics
Broad Institute of Harvard University and Massachusetts Institute
of Technology
Cambridge, Massachusetts

RANJAN DUTTA, PhD
Department of Neuroscience
Lerner Research Institute
The Cleveland Clinic Foundation
Cleveland, Ohio

GILLES EDAN, MD
Department of Neurology
University Hospital of Rennes, Pontchaillou
Rennes, France

ELLIOIT M. FROHMAN, MD, PhD
Professor, Departments of Neurology and Ophthalmology
University of Texas Southwestern Medical Center at Dallas
Dallas, Texas

TERESA C. FROHMAN, BA
Department of Neurology
University of Texas Southwestern Medical Center at Dallas
Dallas, Texas

RALF GOLD, MD
Professor and Chair, Department of Neurology
St. Josef-Hospital/Ruhr-University Bochum
Bochum, Germany
DAVID A. HAFLER, MD
Jack, Sadie, and David Breakstone Professor of Neurology
Harvard Medical School
Division of Molecular Immunology
Center for Neurologic Diseases
Brigham & Women’s Hospital
Boston, Massachusetts
Program in Medical and Population Genetics
Broad Institute of Harvard University and Massachusetts Institute
of Technology
Cambridge, Massachusetts

ANU JACOB, MD
Consultant Neurologist
The Walton Centre for Neurology and Neurosurgery
Liverpool, England, United Kingdom

ILIJAŚ JELČIĆ, MD
Center for Molecular Neurobiology
Institute for Neuroimmunology and Clinical Multiple Sclerosis Research
University Medical Centre Hamburg-Eppendorf
Hamburg, Germany

ADAM I. KAPLIN, MD
Assistant Professor, Departments of Psychiatry and Neurology
Johns Hopkins University School of Medicine
Baltimore, Maryland

DOUGLAS A. KERR, MD, PhD
Associate Professor, Neurology
Director, Johns Hopkins Transverse Myelitis Center
Johns Hopkins University School of Medicine
Baltimore, Maryland

CHRISTOPH KLEINSCHNITZ, MD
Department of Neurology
University of Würzburg
Würzburg, Germany

DANA E. KOZUBAL, BA
Department of Psychiatry
Johns Hopkins University School of Medicine
Baltimore
Maryland
contributing authors

GARY E. LEMACK, MD
Helen J. and Robert S. Strauss Professor in Urology
Department of Urology
University of Texas Southwestern Medical Center at Dallas
Dallas, Texas

RALF A. LINKER, MD
Department of Neurology
St. Josef-Hospital/Ruhr-University Bochum
Bochum, Germany

CLAUDIA F. LUCCHINETTI, MD
Professor of Neurology
Chair, Division of Multiple Sclerosis and Autoimmune Neurology
Mayo Clinic College of Medicine
Rochester, Minnesota, USA

JAMES J. MARRIOTT, MD, FRCPC
Clinical Fellow
St. Michael's Hospital
Toronto, Ontario, Canada

ROLAND MARTIN, MD
Professor
Institute for Neuroimmunology and Clinical Multiple Sclerosis Research
Center for Molecular Neurobiology Hamburg
University Medical Center Eppendorf
Hamburg, Germany

MARCELO MATIELLO, MD
Department of Neurology
Mayo Clinic
Rochester, Minnesota

NICO MELZER, MD
Department of Neurology
University of Würzburg
Würzburg, Germany
SVEN G. MEUTH, MD, PhD
Physician and Researcher
Neurology Clinic
Julius-Maximilians-University
Würzburg, Germany

SEAN P. MORRISSEY, MD
Department of Neurology
University Hospital, Pontchaillou
Rennes, France

KASSANDRA L. MUNGER, MSC
Department of Nutrition
Harvard School of Public Health
Boston, Massachusetts

PAUL W. O’CONNOR, MD, MSC, FRCPC
Division of Neurology
Director, MS Clinic and MS Research
St. Michael’s Hospital
Professor of Medicine (Neurology)
University of Toronto
Toronto, Ontario, Canada

MARIA PIA AMATO, MD
Department of Neurology
University of Florence
Florence, Italy

ISTVAN PIRKO, MD
Associate Professor of Neurology
Director, Waddell Center for Multiple Sclerosis
University of Cincinnati
Cincinnati, Ohio

SEAN JOSEPH PITTOCK, MD
Associate Professor of Neurology
Departments of Neurology and Laboratory Medicine and Pathology
Mayo Clinic College of Medicine
Rochester, Minnesota
ALEXANDRA SCHRÖDER, MD
Department of Neurology
St. Josef-Hospital/Ruhr-University Bochum
Bochum, Germany

ANJALI SHAH, MD
Assistant Professor
Departments of Neurology and Physical Medicine and Rehabilitation
University of Texas Southwestern Medical Center at Dallas
Dallas, Texas

BRUCE D. TRAPP, PhD
Chairman
Department of Neuroscience
Lerner Research Institute
The Cleveland Clinic Foundation
Cleveland, Ohio

CARRILIN C. TRECKER, BA
Departments of Psychiatry and Neurology
Johns Hopkins University School of Medicine
Baltimore, Maryland

SUNITA VENKATESWARAN, MD, FRCPC
Department of Pediatrics
Children’s Hospital of Western Ontario
University of Western Ontario
Toronto, Ontario, Canada

RHONDA VOSKUHL, MD
Professor of Neurology
Jack H. Skirball Chair for Multiple Sclerosis Research
Director, Multiple Sclerosis Program
University of California, Los Angeles
Los Angeles, California

BRIAN G. WEINSHENKER, MD, FRCP(C)
Professor of Neurology
Department of Neurology
Mayo Clinic
Rochester, Minnesota
HEINZ WIENDL, MD
Head, Clinical Research Group for Multiple Sclerosis and Neuroimmunology
Department of Neurology
University of Würzburg
Würzburg, Germany

DEAN M. WINGERCHUK, MD
Associate Professor of Neurology
Mayo Clinic Scottsdale
Scottsdale, Arizona

NATHAN P. YOUNG, MD
Department of Neurology
Mayo Clinic
Rochester, Minnesota

VALENTINA ZIPOLI, MD
Department of Neurology
University of Florence
Florence, Italy
The Blue Books of Neurology have a long and distinguished lineage. Life began as the Modem Trends in Neurology series and continued with the monographs forming BIMR Neurology. The present series was first edited by David Marsden and Arthur Asbury, and saw the publication of 25 volumes over a period of 18 years.

The guiding principle of each volume, the topic of which is selected by the Series Editors, was that each should cover an area where there had been significant advances in research and that such progress had been translated to new or improved patient management.

This has been the guiding spirit behind each volume, and we expect it to continue. In effect, we emphasize basic, translational, and clinical research but principally to the extent that it changes our collective attitudes and practices in caring for those who are neurologically afflicted.

Tony Schapira took over as joint editor in 1999 following David’s death, and together with Art oversaw the publication and preparation of a further 8 volumes. In 2005, Art Asbury ended his exceptional co-editorship after 25 years of distinguished contribution and Martin Samuels was asked to continue the co-editorship with Tony.

The current volumes represent the beginning of the next stage in the development of the Blue Books. The editors intend to build upon the excellent reputation established by the Series with a new and attractive visual style incorporating the same level of high-quality review. The ethos of the Series remains the same: up-to-date reviews of topic areas in which there have been important and exciting advances of relevance to the diagnosis and treatment of patients with neurological diseases. The intended audience remains those neurologists in training and those practicing clinicians in search of a contemporary, valuable, and interesting source of information.

ANTHONY H.V. SCHAPIRA
MARTIN A. SAMUELS
Series Editors
Multiple Sclerosis 3, volume 34 of the Blue Books of Neurology series, is dedicated to the memory of the late Ian W. McDonald, who edited Multiple Sclerosis 1 with Donald H. Silberberg and Multiple Sclerosis 2 with John H. Noseworthy. Prof. McDonald pioneered several key areas of multiple sclerosis (MS) research, including characterization of the physiology and morphology of demyelination and remyelination of the central nervous system (CNS). He developed new laboratory methods, such as evoked potentials, to supplement the clinical diagnosis of MS, and he was among the first to envision the enormous potential of magnetic resonance imaging for dissecting the complex problems of inflammatory brain disease. He applied brain imaging and spectroscopy to improve understanding of the pathogenesis of this disorder and to evaluate new therapies. Moreover, Ian McDonald took a leading position in formulating the consensus diagnostic criteria that have since come to bear his name.

Although the clinicopathologic hallmarks of MS are well recognized, the last decade has witnessed significant clinical and scientific advances that have led to improved diagnosis and treatment as well as new insights into the pathogenesis of this enigmatic disorder. We are confident that Prof. McDonald would be delighted to see how rapidly the field has continued to grow, and we are honored to have been invited to edit this volume. We have endeavored to provide a comprehensive, clinically relevant, up-to-date summary on MS and the heterogeneous spectrum of CNS inflammatory demyelinating disorders, including clinically isolated syndromes, pediatric MS, transverse myelitis, acute disseminated encephalomyelitis, and neuromyelitis optica. Topics discussed include natural history, diagnosis, genetics, epidemiology, neuroimaging, pathogenesis, immunology, biomarkers, gender issues, and cognitive and mood disorders. A strong emphasis on treatment is also included, with a focus on current disease-modifying drugs, attack therapy, symptomatic therapy, complementary alternative approaches, management of aggressive MS, and future immunologic and neuroprotective or reparative strategies.

We would like to express our sincere gratitude to our distinguished coauthors who have given generously of their time and expertise. We also appreciate the support from the Elsevier editorial staff (Hemamalini Rajendrababu and Adrianne Brigido) throughout the development of this text.

CLAUDIA F. LUCCHINETTI, MD
REINHARD HOHLFELD, MD
For the practicing neurologist, knowledge of the natural history of multiple sclerosis (MS) that encompasses the overall course and prognosis is a prerequisite to the counseling of a patient who is given such a diagnosis. When confronted with the reality of MS for the first time, patients’ first questions relate to long-term prognosis: What will happen to me? From a health research point of view, knowledge of the natural history of MS affects how we think about the pathophysiology of MS, guides therapeutic trial design, assists in health care economics and service provision, and provides a benchmark against which therapeutic trial efficacy can be compared.

Natural history data is best obtained from populations of patients that are representative of MS as a whole, such as all MS patients living within a well-defined geographic area. These population-based cohorts are more representative of the disease than hospital- or clinic-based cohorts, which tend to overrepresent more severe disability and may provide an overpessimistic view.

The natural history of MS is among the best studied chronic medical illnesses. Despite a wealth of information gained from large, population-based studies on clinical features predictive of future course and outcome, the ability to apply this knowledge to an individual patient to allow prediction or prognostication has been problematic.

This review focuses on recently published natural history studies, early clinical predictors of disability outcome and their application to an individual patient,
the controversy surrounding the entity of benign MS, and some recent new approaches to data set analysis with emphasis on age at disability milestones rather than time to reach disability milestones.

Disability Progression: What Happens to Patients over Time?

The evolution of MS over time is well studied worldwide, and results are generally consistent among investigators, although some recent natural history studies from North America have suggested a better global prognosis.\(^1,2\) It is important to note that these studies have relied heavily on measures of impairment, specifically the Expanded Disability Status Scale (EDSS) score, as an outcome measure.\(^3\) The EDSS scores range from 0 (no disability) to 10 (death). Cutoff scores most commonly used in natural history studies include mild to moderate disability, with an EDSS score of 3 (e.g., mild paralysis) or EDSS 4 (limited walking ability but able to walk without aid or rest for > 500 m); EDSS 6, which indicates the need for a cane or unilateral support and ability to walk no more than 100 m without rest; and EDSS 8 (need for wheelchair) or EDSS 7 (ability to walk no more than 10 m without rest while leaning against a wall or holding onto furniture for support).

TIME FROM ONSET TO DISABILITY MILESTONES

Natural history studies have focused on the time from onset or diagnosis of the disease to the assignment of one of these EDSS scores; these data provide information regarding the rate of disability progression. If one considers population-based studies of MS in general, median time from onset of MS to EDSS 3 or EDSS 4 ranged from 6 to 23 years.\(^1,2,4-8\) Median time from onset of disease to EDSS 6 was somewhat more consistent (because need for a cane is a more robust and reliable outcome measure) and varied between 16 and 28 years.\(^1,5-8\) Time from onset to the need for a wheelchair ranged from 30 to 52 years for population-based cohorts.\(^1,5,8\)

In a retrospective review of prospectively collected data from all 2837 patients, followed prospectively for 22,723 patient years, registered with one of the four MS clinics in British Columbia, 21% required a cane after 15 years of disease.\(^2\) This frequency increased to 69% by 40 years after onset. At 30 and 40 years after onset, 14% and 22% of patients, respectively, required a wheelchair.

TIME FROM ONSET TO DISABILITY MILESTONES STRATIFIED BY MULTIPLE SCLEROSIS CLINICAL SUBGROUPS

The initial course has a significant impact on the time from onset to specific levels of disability. In 1996, a formal classification of MS disease subtypes was published that has become widely accepted.\(^9\)

- Relapsing-remitting (RR): Clearly defined disease relapses with full recovery or with sequelae and residual deficit on recovery; periods between disease relapses characterized by a lack of disease progression
- Secondary progressive (SP): Initial RR disease course followed by progression with or without occasional relapses, minor remissions, and plateaus
• Primary progressive (PP): Disease progression from onset with occasional plateaus and temporary minor improvements allowed
• Progressive relapsing (PR): Progressive disease from onset with clear acute relapses, with or without full recovery; periods between relapses characterized by continuing progression. A more recent proposed classification is illustrated in Figure 1-1.10
• Another classification type used by some investigators is that of single-attack progressive (SAP) MS, in which there is a single “onset attack” followed later by a progressive course.11

In population-based studies, an RR onset is most frequent (95% in Olmsted County, Minnesota; 66% in London, Ontario; 87.6% in British Columbia; 85% in Lyon, France).1,2,5,8 The frequency of conversion from RRMS to SPMS reported for the Ontario cohort increased with duration of disease (12% at 5 years, 41% at 10 years, 58% at 15 years, and 89% at >26 years).8 Other studies have reported a lower frequency of conversion.1,2 Frequencies of PPMS and PRMS (both of which are considered progressive from onset) vary from 9% to 19% and from 6% to 15%, respectively.5,8

Patients with an RR course take a longer time from onset to reach disability milestones than do patients with an initially progressive course (Fig. 1-2). Myhr and colleagues reported a 72% probability of not needing a cane after 15 years of disease for patients with RRMS, compared with only 10% for those with PPMS.12 Similarly, RRMS patients had an 84% probability of not needing a wheelchair after 15 years, compared with 42% for those with PPMS. In the Olmsted County 2000 study, median time from onset to the need for a cane (see Fig. 1-2B) in patients who continued to have an RR course was 51 years, compared with 17.9 years for those with SPMS and 6.3 years for those with PPMS.1 In the French population-based Lyon cohort, the median time from onset to need for a cane was

Figure 1–1 Proposed classification of the onset and course of multiple sclerosis (MS). (Reproduced from Confavreux C, Vukusic S: Natural history of multiple sclerosis: Implications for counselling and therapy. Curr Opin Neurol 2002;15:257-266, with permission of Lippincott Williams and Wilkins, online at http://www.lww.com.)
23 years for patients with an RR course, compared with 7 years for patients with a PP course. In a recent natural history study of PPMS from British Columbia, Canada, progression of disability was slower than previously reported. The median time from onset to requiring a cane was 13.3 years; however, there was considerable variation. Although 25% of the patients had reached EDSS 6 after 7.3 years, another 25% did not require a cane after 25 years.

What Affects Long-Term Disability Outcome?

A multitude of demographic and clinical variables including female gender, a younger age at onset, sensory symptoms or optic neuritis, and a monosymptomatic presentation at onset have been associated with a favorable course. In contrast, prognostic variables associated with a poor outcome have included male gender; onset with motor, sphincter, or cerebellar features; poor recovery from initial or early attacks; higher attack rate in the first 5 years; and a
progressive course.8,14-16 These statistically significant associations have generally been reported in the context of univariate and, less frequently, multivariate analysis. Few predictors of outcome have been reported for PPMS.13 Although individual factors are often statistically significant when considering large population-based cohorts, their clinical prognostic applicability to an individual MS patient is much less reliable. There is little doubt that the initial course from onset is the strongest clinical predictor of how quickly a patient will reach disability milestones.

CLINICAL RELAPSES

Disease-modifying agents (DMAs) have been shown in large, randomized controlled trials to reduce the relapse rate and to reduce the accrual of lesions identified on magnetic resonance imaging.14,17-19 Whether they have a significant clinical benefit over the long term remains unclear. For RRMS, a central and highly controversial question is whether the frequency (and severity) of relapses influences disability progression in MS.20,21 Reported relapse rates have differed among MS studies, with prospective assessments at close intervals yielding the highest and probably the most sensitive results.20 A yearly relapse rate of 0.5 is probably a reasonable estimate in a population-based sample of patients with RRMS.20

In the Ontario study, 58\% of 681 patients with RR disease had one attack during the first 2 years, 21\% had two attacks, and only 20\% had three or more attacks in the first 2 years of disease.22 Natural history studies from Lyon, Ontario, and Turkey have shown a weak association between number of relapses in the first 2 to 5 years and long-term disability outcome, although causality has not been established.5,6,16 Other studies failed to conclude that number of relapses in the first few years influences final outcome, and more recent, large natural history studies have provided convincing evidence of a dissociation between relapses and disability progression.11,21,23,24 In fact, at the Jekyll Island conference on MS clinical trial outcome measures, relapse frequency was ranked 11th in terms of perceived importance in measuring therapeutic response in MS.25

The Lyon group reported that, once a detectable threshold of irreversible disability (EDSS 4) was reached, the disease entered a state of uniform progression that did not appear to be influenced by the presence or absence of superimposed relapses (Fig. 1-3).21 Patients with a progressive course from onset reached irreversible disability much quicker than patients with an RR-onset course (median, 0.0 versus 11.4 years). However, once this point of irreversible disability was reached, the times to EDSS 6 (median, 5.7 versus 5.4 years) or EDSS 7 (median, 12.1 versus 12.0 years) were similar (\(P > .70\)) regardless of onset course.21 In the Olmsted County population-based study, the time to development of a clinical threshold of disability (EDSS 3), whether 2, 5, or 10 years, did not affect the rate of further progression (Fig. 1-4).1 Among patients with PPMS, the time course of progressive disability was not significantly influenced by the presence or absence of superimposed relapses (Fig. 1-5).21 For patients with SPMS (initially RR), the median time from EDSS 4 to EDSS 6 was similar for 292 patients without and 191 patients with superimposed relapses (4.0 versus 4.4, respectively; \(P = .68\); see Fig. 1-5).21 Surprisingly, patients with superimposed relapses had a more favorable outcome than those without superimposed relapses, with a longer time from EDSS 4 to EDSS 7 (10 versus 7.8 years; \(P = .04\)). Similarly, superimposed relapses were
Figure 1–3 Irreversible disability, based on Expanded Disability Status Scale (EDSS) score, occurs sooner in patients with a progressive course from onset, compared with those with a relapsing-remitting (RR) course from onset, although, once irreversible disability has occurred, the time course of progressive disability is similar regardless of the initial course (relapsing or progressive). Kaplan–Meier estimates are shown for time from onset of multiple sclerosis to assignment of EDSS 4 (A), time from EDSS 4 to EDSS 6 (B), and time from EDSS 6 to EDSS 7 (C) among 1844 MS patients stratified by initial course. (Data from Confavreux C, Vukusic S, Moreau T, Adeleine P: Relapse, remission, and progression in multiple sclerosis. N Engl J Med 2000;343:1430-1438.)