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Right: Prototype of a silicon carbide foam heater ele-
ment. The electrical conductive ceramic foam heats up
when electrical power is applied to top and bottom
end. Here a power of 750 W was applied. The
ceramic foam is 30 mm in diameter (Photo taken by
Friedrich Weimer, Dresden. Image courtesy of J. Adler,
Fraunhofer-IKTS, Dresden, Germany).

& All books published by Wiley-VCH are carefully pro-
duced. Nevertheless, authors, editors, and publisher
do not warrant the information contained in these
books, including this book, to be free of errors.
Readers are advised to keep in mind that statements,
data, illustrations, procedural details or other items
may inadvertently be inaccurate.

Library of Congress Card No.:
applied for

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the
British Library.

Bibliographic information published by
Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the
Deutsche Nationalbibliografie; detailed bibliographic
data is available in the Internet at
<http://dnb.ddb.de>.

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim

All rights reserved (including those of translation
into other languages). No part of this book may be
reproduced in any form – nor transmitted or trans-
lated into machine language without written permis-
sion from the publishers. Registered names, trade-
marks, etc. used in this book, even when not
specifically marked as such, are not to be considered
unprotected by law.

Printed in the Federal Republic of Germany.

Printed on acid-free paper.

Typesetting Kühn & Weyh, Satz und Medien,
Freiburg
Printing Strauss GmbH, Mörlenbach
Bookbinding J. Schäffer GmbH i. G., Grünstadt

ISBN-13: 978-3-527-31320-4
ISBN-10: 3-527-31320-6



For many years, the presence of porosity in ceramics was often seen to be problem-
atic and a significant scientific effort was made to devise processing routes that pro-
duced ceramics with zero porosity. An exception to this philosophy was the refrac-
tory industry, in which it was understood that the presence of porosity is critical in
controlling thermal conductivity. A sophisticated example of this concept was the
development of refractory tiles for the thermal protection system of the Space Shut-
tle. In other branches of materials science, similar ideas were recognized. For exam-
ple, rigid and flexible foams had been developed in polymer science and engineer-
ing. In these materials, porosity is controlled to optimize the elastic behavior and
weight. In more recent times, scientific developments have touched on new areas
such as biomimetics, in which scientists aim to duplicate natural structures. There
has also been the push (and pull) to design materials and devices at smaller scale
levels. Materials are becoming multifunctional with designed hierarchical struc-
tures, and porous ceramics can be seen in this light. The challenge now is for mate-
rials scientists to produce ceramics with porosity of any fraction, shape, and size.
This also leads to new directions in the scientific understanding of porous structures
and their properties. For the above reasons and my personal involvement in this
field, I am pleased to see this new book on porous ceramics. This book takes a broad
view of the field, while still allowing some detailed scientific aspects to be addressed.
The book considers novel processing approaches, structure characterization,
advances in understanding structure–property relationships and the challenges in
all these areas. It is interesting to see the structural variety that forms the "pallette"
for the materials scientist and the wide range of properties that are controlled by
porosity and therefore require careful optimization. Finally, the book gives examples
of technologies in which porous ceramics are being exploited and the demands that
arise as products move to commercial use. I applaud the editors for their vision and
the authors for sharing their insight. I wish you a successful outcome for your
efforts.

David J. Green
State College, Pennsylvania, USA
October 29, 2004
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Porosity in materials can be arranged in a well-defined and homogeneous manner
or heterogeneously. It can be oriented, separated, or interconnected. From these pos-
sibilities pores of different shape, size, and interconnectivity arise. The three-dimen-
sional assemblage of a large number of pores possessing a specific shape leads to a
solid monolith displaying what can be termed a cellular structure.

A close analysis of materials found in nature reveals that most of them have a
cellular structure and thus contain a significant amount of porosity, which plays a
key role in optimizing their properties for a specific function. Indeed, Robert Hooke
(1635–1703), a natural philosopher, experimental scientist, inventor, and architect,
realized this in his investigations of the natural world and coined the term “cell” for
describing the basic unit of the structure of cork, which reminded him of the cells of
a monastery. In “Observation XVIII” of his book “Micrographia: or Some Physiolog-
ical Descriptions of Minute Bodies Made by Magnifying Glasses with Observations
and Inquiries Thereupon” (London: J. Martyn and J. Allestry, 1665), he wrote:

“... I could exceedingly plainly perceive it to be all perforated and porous, much like a
Honey-comb, but that the pores of it were not regular ... these pores, or cells, ... were indeed
the first microscopical pores I ever saw, and perhaps, that were ever seen, for I had not met
with any Writer or Person, that had made any mention of them before this ...”

Similarly, with an updated pool of knowledge and equipped with higher resolu-
tion analytical instruments, 300 years or so later researchers around the globe are
interested in investigating and exploiting the advantages and peculiarities of cellular
materials. Indicators of the increasing importance of this field are the numerous
international conferences devoted to all three classes of cellular materials (metals,
plastics, and ceramics), special issues of various scientific journals, and a rising
number of specific books discussing either cellular structures in general or, more
specifically, cellular metals and cellular plastics, among them:

L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge Uni-
versity Press, 1999;
D.L. Weaire, The Physics of Foams, Oxford University Press, 2001;
S. Perkowitz, Universal Foam: From Cappuccino to the Cosmos, Walker & Co., New
York, 2000;
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H.-P. Degischer, B. Kriszt (eds.), Handbook of Cellular Metals: Production, Process-
ing, Applications, Wiley-VCH, Weinheim, 2002;
M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley,
Metal Foams: A Design Guide, Butterworth-Heinemann, Oxford, 2000;
S.-T Lee, N.S. Ramesh, Polymeric Foams: Mechanisms and Materials, CRC Press,
Boca Raton, FL, 2004;
A.H. Landrock, Handbook of Plastic Foams, Noyes Publications, Park Ridge, NJ,
1995.

The reason for this considerable interest in cellular materials derives from the rec-
ognition that porosity affords further functionalities to a material, ranging from
an increased surface area, to permeability, to the control of heat transport within
the structure, to the maximization of the strength/density ratio.

An analysis of the published literature by searching just the terms “ceramic” and
“foam” revealed an exponential increase in scientific papers and patents with a total
of 26 publications in 1977, 64 in 1992, 133 in 1998, and 167 in 2004.

Books dealing with porous ceramics have also been published (e.g., R.W. Rice,
Porosity of Ceramics, Marcel Dekker, New York, 1998), but no publication specifically
concerning cellular ceramics was available yet. Thus, the idea was born to fill this
gap with a focused book and to provide students, researchers, manufacturers, and
users with a comprehensive discussion of the most relevant aspects of this topic,
covering manufacturing processes, structure characterization, analysis of the proper-
ties/structure relationship, and examples of applications. As such, this book does
not deal, on purpose, with all classes of porous ceramic materials, disregarding, for
instance, membranes, zeolites, and low-porosity solids, for which excellent reviews
and books are already available. It is also not a collection of publications deriving
from a conference, but rather represents the contribution of specialists from acade-
mia and industry who are at the forefront of this innovative field. This book contains
an updated set of references allowing the reader to gain further insight into specific
issues of this fascinating class of advanced materials.

We are deeply grateful to the authors for their enthusiasm and willingness to con-
tribute to this project and to the referees for their critical involvement in the peer-
reviewing process. Dr. Jörn Ritterbusch (Wiley-VCH) deserves special recognition
for displaying the necessary foresight for embracing this endeavor, and we are
indebted to Heike Höpcke (Wiley-VCH) for her graceful and helpful assistance
throughout the editorial process.

Finally, we appreciate the patience, support, and encouragement of our families,
to which this book is dedicated.

Michael Scheffler Paolo Colombo
Seattle, WA, USA Bologna, Italy

19/11/2004
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